
20th Australasian Fluid Mechanics Conference
Perth, Australia
5-8 December 2016

Flutter of a nonlinear-spring-mounted flexible plate for applications in energy harvesting

R. M. Howell and A. D. Lucey

Fluid Dynamics Research Group, Department of Mechanical Engineering,
Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845

Abstract

Previous work has investigated the linear fluid-structure inter-
action (FSI) of a spring-mounted cantilevered plate in an axial
flow. In this paper we introduce a non-linear mount system that
permits finite-amplitude oscillations of the support. However,
the dynamics of the fluid-loaded flexible plate remain linear.
This hybrid permits us to determine whether small (linear) flex-
ible plate motions are able to drive non-linear motion of the
spring mount and therefore energy production while also serv-
ing as an intermediate step before studying a fully non-linear
system. We use numerical simulation for the non-linear sys-
tem while our state-space solution of the corresponding linear
system is used to guide the choice of parameters in the investi-
gation. We show that above the flow speed of flutter-onset for
small disturbances, amplitude growth leads to non-linear sat-
uration so that the system settles into finite-amplitude oscilla-
tions. The frequencies of these oscillations evidence the dual-
frequency characteristics of mount oscillation observed in phys-
ical experiments. When the natural frequency of the mount is
low, hysteresis can occur and thereby the system supports sub-
critical instability. When damping at the mount is introduced
we show how energy is generated by the FSI system and that its
efficiency as an energy-harvesting device is dependent upon the
natural frequency of the mount.

Introduction

Recent practical motivation for the renewed study of can-
tilevered flexible plates in axial flow - a problem first studied
in the modern era by [4] - is the potential to use flow-induced
oscillations, or flutter, of the flexible plate to capture kinetic
energy from the mean flow above a critical flow speed, exam-
ples of these recent studies being [11; 10] wherein the latter
paper utilises an articulated beam. In this paper we consider the
spring-mounted cantilever system illustrated in figure 1 wherein
the flow-induced oscillations of the flexible plate drive vertical
oscillatory motion of a mass-spring support system having its
own dynamics that can clearly be tuned. As shown in the fig-
ure, the extraction of power can be modelled by the inclusion of
linear damping at the support.

In this paper we extend our linear work detailed in [3] that
developed theoretical and computational models of the two-
dimensional system and mapped out the dynamics of the re-
maining parameter space that has the usual non-dimensional
control parameters, mass ratio L̄ and free-stream flow speed
U∞, for a fixed cantilever, in addition to which there is the nat-
ural frequency of the spring-mass support system, ωs, where
the subscript ‘s’ throughout this paper signifies a spring-mount
property.

Our recent physical experiments for the the set-up shown
in figure 1 show that at the critical velocity Uc at which flut-
ter sets in, the mount oscillation frequency is non-linear with
intermittent change observed as the system switches between
being dominated by either the natural frequency of the spring
mount or the flutter frequency ωc of the fixed-cantilever FSI
system. Also present are higher frequency contributions from
the higher-order in vacuo natural frequencies of the flexible
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Figure 1: The fluid-structure system under consideration.

plate. The present work introduces a modification to our nu-
merical model to capture these dynamics. The linear spring at
the mount is replaced by a non-linear spring modelled using a
similar method to that described in [9]. The stiffness of a non-
linear spring can either be strain hardening or strain softening
and both cases have their physical applications. The relation-
ship between spring force and spring displacement in each case
respectively is

F = Ksηs(1+ γ|ηs|) or F = Ksηs(1− γ|ηs|) , (1a, b)

where ηs is the mount vertical-displacement, Ks is the linear
mount spring-stiffness and γ is a constant that determines the
magnitude of the non-linear contribution. A strain hardening
spring stiffness as described by equation (1a) is the most com-
mon characteristic of typical metal springs and is used in this
study.

This modification still permits the use of the method of [3]
that combined numerical simulation with eigen-analysis of the
system equations; however, when the non-linear spring is im-
plemented and the amplitude of motions is sufficiently large,
only the numerical simulation can be utilised. Thus, ideal two-
dimensional flow is assumed wherein the rotationality of the
boundary-layers is modelled by vortex elements on the solid-
fluid interface and the imposition of the Kutta condition at
the plate’s trailing edge. The Euler-Bernoulli beam model is
used for the structural dynamics. The latter is appropriate be-
cause our overall objective is to design and optimise an energy-
harvesting system that operates for low-amplitude deformations
- to reduce material fatigue effects - of the flexible plate by tun-
ing the support system such that the available flow speed co-
incides with the modified critical speed of flutter onset of the
flexible plate.

Theoretical & Computational Modelling

The fundamentals of the current method that mixes numerical
simulation with eigenvalue analysis are fully detailed in [2] for
a fixed cantilever. The adaptation of that method to incorporate
a linear spring-mount is detailed in [3].

The one-dimensional Euler-Bernoulli thin-beam model
equation couched in finite-difference form is used for the struc-
tural dynamics

ρh [I]{η̈}+{d} [I]{η̇}+B [D4]{η}+{Ke} [I]{η}= δp. (2)

The flexible plate of length L is discretised into N mass points
that are uniformly spaced so that δx = L/N. B, ρ and h are



respectively the flexural rigidity, material density and thick-
ness of the plate. The non-linear spring stiffness is equated as
Ke = (1+γ|ηs|)Ks. [D4] is a fourth-order spatial-differentiation
matrix and [I] is the identity matrix; note that the vectors {d}
and {Ke} only contain a non-zero value at the first mass point.

Simply supported free plates where the support can move
vertically and actuate the system have been analysed in studies
of insect flight and base-excited, fluid-conveying flexible tubes,
for example see [6] and [1] respectively, and constrain that the
leading edge must follow the actuating force. In our study, as
well as applying an actuating force due to the reaction of the
spring, we allow that the motion of the leading edge can also
be actuated by the motion of the flexible plate; these constraints
are applied through the inclusion of a shear-force balance con-
dition at the leading edge, as detailed in [8], that transmits the
shear force that drives the vertical motion of the mounting sys-
tem whilst also enforcing that neither free nor controlled rota-
tion of the plate about its leading edge is permitted. This means
that the support mechanism can provide, without deformation,
any level of moment reaction to the flexible plate at its upstream
end. Therefore, the shear condition joins two separate systems:
a vertically oscillating flat plate with a vertically oscillating flex-
ible plate.

Referring to [8] the shear force in the flexible plate at the
leading edge is calculated through the following equation of
motion for ηs(t),

B
∂3η

∂x3

∣∣∣
x=0

=−
[
M∗s η̈s +d∗s η̇s +K∗e ηs

]
, (3)

where M∗s is the mass at the mount system. To non-
dimensionalise the spring-mount system, spring-mount proper-
ties must be applied in their ‘per-width’ form; for example, the
per-width value of the linear spring-stiffness Ks is K∗s =

∫
Ksdx.

The shear condition is used to solve for the second boundary
condition mass point η−2; to solve for the first boundary condi-
tion mass point η−1 we enforce that the clamp extension is flat
by setting that the first mass point in the system is horizontally
in line with the clamp and so η−1 = η1. These boundary condi-
tions are applied where necessary in the leading-edge values of
[D4].

The flow field is found using a linearised BEM with N first-
order vortex panels on the flexible plate. At the centre of each
panel is a control point; these coincide with the mass points
in equation (2). Vortex singularities are used because of the
discontinuity of tangential fluid velocity across the plate that
makes it a lifting surface; the distributed lift drives the motion
of the flexible plate. The singularity strengths are determined by
enforcing the no-flux boundary condition at every panel control
point and continuity of the distributed vorticity between adja-
cent panels in the discretisation. In addition, the boundary con-
dition of zero vorticity at the plate’s trailing edge is applied, thus
enforcing the standard Kutta condition of zero pressure differ-
ence at the trailing edge for linear displacements.

The unsteady Bernoulli equation is utilized to determine the
pressure distribution across the flexible plate i.e. the pressure
perturbation that drives the plate motion; it is here equated as

δp = 2ρfU2
∞

[
B+

1
]
{η}+ ρfU∞

[
B−1
]
{η̇}

+ ρfU∞

[
B+

2
]
{η̇} + ρf [B2]{η̈} . (4)

This transmural pressure is then used as the forcing term in
equation (2). ρf is the fluid density and [B] are matrices of sin-
gularity influence coefficients: the [B] matrices marked with a +
or− have been suitably rearranged to have the equation in terms
of η instead of linearised panel slope θ and averaged values of
η. The fluid pressure terms that depend on plate displacement,
velocity and acceleration in equation (4) can be interpreted as

the hydrodynamic stiffness, damping (two terms) and inertia re-
spectively.

The motions of the plate and the fluid flow are fully cou-
pled through deflection, vertical velocity and acceleration of the
two media at their interface. This is achieved by equating equa-
tions (2) and (4) that allows the following single system (matrix)
equation to be written

{η̈}= [E]{η̇}+[F]{η} . (5)

We take two approaches to the solution of equation (5). In
the first approach that is only applicable to the linear model,
we reduce the second-order ordinary differential equation in
η to first-order using the state-space variables w1(t) = η(t),
w2(t) = η̇(t) = ẇ1(t) that therefore allows η̈(t) = ẇ2(t). Re-
arranging in companion-matrix form, single-frequency time-
dependent response is assumed at ω which is a complex eigen-
value of the companion-form. Positive ωI and ωR respectively
represent the oscillatory and amplifying parts of the response.
As the flexible plate is discretised into N mass points we there-
fore extract 2N system eigenmodes. This form of analysis is
used to first identify the linear-stability characterises of the sys-
tem prior to studying the dynamics of finite-amplitude motions.

For the non-linear study, we perform a time-discretisation of
the system and then numerically time-step the equation using
a fully-implicit method to determine the system response to an
applied form of initial perturbation in the form of an arbitrary
deflection of the flexible plate with maximum displacement η0;
this method is fully detailed in [3]. We implement the non-
linear mount model by using the mount displacement from the
previous time step to calculate the contribution of the non-linear
component of the mount spring in equation (2). In doing so we
are able to study transient behaviour and reveal localised flow-
structure dynamics that when summed contribute to the system
response.

Results

Our results are presented in non-dimensional form using the
scheme detailed in [2] whereby reference time and length are

tr = (ρh)
5
2 /(ρ2

f B
1
2 ) and Lr = ρh/ρf. (6a, b)

Therefore non-dimensional velocity, time and plate oscillation
frequency are calculated as

Ū =U∞tr/Lr, t̄ = t/tr and ω̄ = ω tr. (7a, b, c)

The non-dimensional displacement, non-linear spring coeffi-
cient and length (or mass ratio) of the flexible plate are defined
by

η̄ = η/Lr, γ̄ = γ Lr and L̄ = L/Lr . (8a, b, c)

Therefore, the merit of the scheme in equation (6) is that for
given plate and fluid properties, the non-dimensional length and
flow speed Ū and L̄ become independent control parameters.

To characterise the mounting system, we non-dimensionalise
ωs so that ω̄s = (K∗s /M∗T)

1
2 tr where MT = ρhL is the total plate

mass. Damping is included at the mount in multiples of critical
damping dc = 2

√
K∗M∗T so that d+ = d/dc.

In summary, the critical velocity and frequency of the system
Ūc and ω̄c take the functional dependence on the system’s con-
trol parameters f (L̄, ω̄s,d+, γ̄). All results presented herein are
for ‘short’ plates with a mass ratio of L̄ = 1 and an illustrative
value of γ̄ set equal to 10. Therefore Ūc and ω̄c solely depend
upon ω̄s and d+.

We discretise the flexible plate into N = 50 panels, follow-
ing [2] wherein the precursor linear methods were validated.
Finally, the start-up procedure for the non-linear system is from



a small, but finite, initial displacement that, we have checked,
does not influence the final saturated state to which it amplifies.

System Dynamics

A frequency analysis of the mount-oscillation displacement in
the absence of damping is presented in table 1(a) for different
increments ∆ above the linear flutter-onset flow speed Uc for
spring-mounting systems with ω̄s = 1 and 10. These results
show that there are two different frequencies present in the time
series of the mount oscillation. The term IU is the intensity
of the higher frequency divided by the intensity of the lower
frequency. It can therefore be seen that the lower frequency,
associated with single-mode flutter, dominates the oscillation.
Its value increases with flow speed above Uc (i.e. increasing
∆) because this generates increased amplitudes of the mount
oscillation that, through the strain-hardening of the spring, in-
creases its stiffness. We remark that these frequencies increase
towards the value for the corresponding fixed cantilever at 15.3,
as shown in [2], because the fixed cantilever is analogous to a
mounting with infinite spring stiffness. The higher frequency is
the coalescence of the second and third eigenmodes of the flex-
ible plate in vacuo which the spring mounted clamp promotes
at lower flow speeds than for the fixed cantilever case.

The development of the non-linearly saturated states sum-
marised in table 1(a) from a small-amplitude initial disturbance
are illustrated in figure 2 for each of ω̄s = 1 and 10 when
∆ = 0.6. In each figure both the mount- and flexible-plate tip-
displacements are shown. Both figures feature exponential am-
plitude growth at early times due to the linear-instability mech-
anism after which the non-linear forces of the spring mount take
effect to arrive at the finite-amplitude state of oscillatory equi-
librium state (or limit-cycle oscillations). Contrasting the time
series for ω̄s = 1 and 10, it is noted that the former (less stiff)
mount results in higher amplitudes, as would be expected, with
a greater component of the higher-frequency content as seen in
table 1(a). We also remark that the tip deflection relative to
the mount displacement is lower for ω̄s = 1 and this suggests
that the configuration is a more viable energy-harvesting device
when attempting to minimise plate flexure.

Results such as those of figure 2 have been used to gen-
erate figure 3 wherein the amplitude of the saturated oscilla-
tory state is plotted against non-dimensional flow speed using
each of mount and plate-tip deflections and at each of ω̄s = 1
and 10. For the case ω̄s = 1, the expected bifurcation dia-
gram is seen for the mount motion; this is similar to that in
[5] for flow over one side of a flexible plate non-linearly de-
formed due to divergence instability. However, the result for the
flexible-plate tip shows an increasing rate of amplitude growth
for Ū >Uc and this is probably due to the nature of the instabil-
ity mechanism changing (from pure single-mode flutter to in-
clude modal-coalescence flutter) with increases to flow speed.
This effect is also seen for ω̄s = 10 for both the mount and
tip deflections. Included in all the panels of figure 3 are the
instability-onset flow speeds for the corresponding linear analy-
sis as dashed lines. Accordingly, for the case ω̄s = 1 a hysteresis
loop can be seen that indicates sub-critical instability; the exis-
tence of sub-critical flutter instability of fixed cantilevers has
often been noted in experimental studies. Clearly the existence
of sub-critical instability would be advantageous in energy har-
vesting because the device could operate at flow speeds lower
than those of flutter onset predicted by linear-stability analysis.

Energy Harvesting

In order to model energy-harvesting of the present FSI system,
damping is now introduced at the spring mount. To illustrate
its effect we use a value of d+ = 0.1. Its effect on oscillation
frequency and amplitude, as a modification to the correspond-

ω̄s = 1 ω̄s = 10
(a) ∆ ω̄L ω̄U IU ω̄L ω̄U IU

0.0 4.1 28.3 0.01 10.8 32.3 0.03
0.2 10.0 30.1 0.11 11.6 35.3 0.05
0.4 10.1 30.9 0.09 12.4 37.6 0.06
0.6 10.9 33.2 0.15 13.4 40.1 0.07
0.8 11.3 40.0 0.19 13.9 42.1 0.07

(b) ∆ ω̄L ω̄U IU ω̄L ω̄U IU

0.2 10.2 30.6 0.12 13.6 41.0 0.05
0.4 11.0 32.8 0.16 15.1 45.6 0.02

Table 1: Mount oscillation frequencies for increasing Ū =
Uc(1+∆) for varying ω̄s with L̄ = 1 & γ̄ = 1×104: (a) d+ = 0,
(b) d+ = 0.1.
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Figure 2: Displacement in time for ∆ = 0.6 with d+ = 0, L̄ = 1
& γ̄ = 1× 104: — Mount, - - Tip; Top - ω̄s = 1, Bottom -
ω̄s = 10. Small windows show traces from t̄ = 16 to 17.

ing undamped cases discussed above, is presented respectively
in table 1(b) and figure 3. With regard to the former its main
effect is to increase the frequency of the finite-amplitude oscil-
lations; this is thought to occur because damping more effec-
tively damps the single-mode flutter with the lower frequency
than the modal-coalescence flutter mechanism with the higher
frequency. The results in figure 3 show that damping increases
the linear instability-onset flow speeds and, overall, leads to a
translation of the bifurcation curves to higher flow speeds; ac-
cordingly damping exercises a stabilising effect.

With damping included, we can now asses the energy-
harvesting capability of the system. The power available from
the free stream Pin is equal to the time rate of change of ki-
netic energy in the free stream 0.5ṁU2

∞ where ṁ is the mass
flow rate ρfU∞A. The term A is the cross-sectional area that is
equal to the vertical swept area by the mount 2ηs when it has
reached steady-state multiplied by unit width for the present
two-dimensional analysis. As shown in [3], when damping is
included in the spring-mount system, the time-average of the
energy-dissipation term Ḋ = d∗s η̇2

s is a measure of how much
useful power can be extracted from the system. The power-
generation efficiency of the system, α, is therefore given by
Ḋ/Pin. For the present d+ = 0.1, α for ω̄s = 1 and 10 respec-
tively is found to be 0.03 and 0.01 for ∆ = 0.2 and 0.02 and
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Figure 3: Maximum displacement for increasing Ū =Uc(1+∆)
with L̄ = 1 & γ̄ = 1×104: Top two figures - ω̄s = 1, Bottom two
figures - ω̄s = 10; × d+ = 0, • d+ = 0.1. The left and right ver-
tical dashed lines denote Uc values for the linear cases without
and with damping respectively. 1st and 3rd figures: mount, 2nd
and 4th figures: tip.

0.03 for ∆ = 0.4. These values are large when compared to [7],
who found efficiencies of the order of 10−3 for equivalent fixed
cantilever piezoelectric devices.

To illustrate the engineering application of the present sys-
tem as an energy-harvesting device we consider a moderately
sized thin aluminium flexible plate of L = 1 m and width 1 m
for the same non-dimensional parameters as above i.e. L̄ = 1,
ω̄s = 1, γ̄ = 1× 104 and d+ = 0.1. In environmental condi-
tions of air at flow speed 15 Km/h, values of displacement of
mount and tip are 0.08 m and 0.70 m respectively with a mount
frequency of approximately 20 Hz. Power from the flow is ex-
tracted with an efficiency of α = 0.06 so that from the 1.4 W
available, 0.08 W is generated. We remark that this system is
yet to be optimised.

Conclusions

We have extended our model for predicting the two-dimensional
linear-stability characteristics of spring-mounted cantilevered
plates in a uniform flow by incorporating a non-linear spring at
the mount. This allows finite amplitudes of the mount displace-

ment to be modelled. The dynamics of the system have been
investigated for cases that, for a rigid mounting, would suc-
cumb to single-mode flutter at stability onset. It has been shown
that the introduction of a non-linear spring at the mount permits
dual frequency mount oscillation and saturation of this oscilla-
tion with increasing amplitude for increasing flow speed above
the linear Uc. The value of the main, low frequency, component
of the response lies between the natural frequency of the mount
ω̄s and the frequency at flutter onset of a fixed cantilever; the
higher frequency component arises from a modal-coalescence
coupling between the in vacuo second and third eigenmodes
of the flexible plate. This higher frequency has less affect on
the mount oscillation at higher values of ω̄s. For low ω̄s, there
exists hysteresis that yields a region of flow speeds supporting
sub-critical flutter instability. The inclusion of (linear) dash-
pot damping at the mount does not lead to a change from the
fundamental dynamics of the corresponding elastic system. Its
inclusion allows the energy-generating capability of the system
to be quantified. Preliminary results indicate efficiencies that
would be useful in engineering applications and that the perfor-
mance of the system benefits from a relatively flexible spring
mounting.
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